Sains Malaysiana 54(3)(2025): 745-755
http://doi.org/10.17576/jsm-2025-5403-11
Pemodelan Kemeruapan dan Gelembung dalam Pasaran Mata
Wang Kripto menggunakan Pendekatan Rantaian Markov Tersembunyi
(Modeling Volatility and Bubbles in Cryptocurrency
Markets using Hidden Markov Chain Approach)
NURUL ‘AIN SYAFIQAH M.SAFEE
& SAIFUL IZZUAN HUSSAIN*
Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 23 Mei 2024/Diterima:
27 Disember 2024
Abstrak
Keadaan pasaran mata wang kripto sukar untuk dijangkakan kerana mempunyai
kemeruapan yang tinggi. Kajian ini menggunakan model rantaian Markov
tersembunyi dalam mengelaskan pergerakan utama mata wang kripto. Hasil kajian
menunjukkan pasaran mata wang kripto beralih antara lima keadaan yang
dikelaskan kepada beberapa pasaran menaik dan menurun mengikut tahap kemeruapan.
Kejadian letusan gelembung pasaran yang berlaku semasa krisis mata wang kripto
dikesan banyak berada dalam keadaan pasaran menurun dengan kemeruapan
tertinggi. Hasil kajian yang diperoleh ini termasuklah kebarangkalian peralihan
dapat digunakan oleh para pelabur bagi menyusun strategi pelaburan yang
berkesan untuk memperoleh pulangan yang tinggi.
Kata kunci: Model rantaian Markov tersembunyi; pasaran menaik; pasaran
menurun
Abstract
The cryptocurrency market is
difficult to predict due to its high volatility. This study uses a hidden
Markov chain model to classify the major movements of cryptocurrencies. The
results of the study show that the cryptocurrency market alternates between
five states, which are categorized into several bullish and bearish markets
depending on the degree of volatility. The bursting of market bubbles that
occurred during the cryptocurrency crisis was mostly found in bear market
states with the highest volatility. Among the results of this study is the
transition probability, which can be used by investors to formulate an
effective investment strategy to achieve high returns.
Keywords: Bear market; bull market; hidden Markov model
RUJUKAN
1
References
2
Agosto, A. & Cafferata, A. 2020.
Financial bubbles: A study of co-explosivity in the cryptocurrency market. Risks 8(2): 34. doi:10.3390/risks8020034
Baum, L.E., Petrie, T., Soules, G. & Weiss, N. 1970. A
maximization technique occurring in the statistical analysis of probabilistic
functions of Markov chains. Annals of Mathematical Statistics 41(1):
164-171. https://doi.org/10.1214/aoms/1177697196
Caferra,
R. & Vidal-Tomás, D. 2021. Who raised from the abyss? A comparison between
cryptocurrency and stock market dynamics during the COVID-19 pandemic. Finance
Research Letters 43: 101954. doi:10.1016/j.frl.2021.101954
Caporale, G.M. & Zekokh, T. 2019. Modelling volatility of cryptocurrencies
using Markov-Switching GARCH models. Research in International Business and
Finance 48: 143-155. doi:10.1016/j.ribaf.2018.12.009
Chee, K.C. & Omar, N. 2020.
Bitcoin price prediction based on sentiment of news article and market data
with LSTM model. Asia-Pacific Journal of Information Technology and
Multimedia 09(01): 1-16. doi:10.17576/apjitm-2020-0901-01
Chen, P., Yi, D. & Zhao, C. 2020. Trading strategy for market situation
estimation based on hidden Markov model. Mathematics 8(7): 1126. https://doi.org/10.3390/math8071126
Chuen, D.L.K., Guo, L. & Wang,
Y. 2018. Cryptocurrency: A new investment opportunity? Journal of
Alternative Investments 20(3): 16-40. doi:10.3905/jai.2018.20.3.016
Conlon, T. & McGee, R. 2020.
Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance
Research Letters 35: 101607. doi:10.1016/j.frl.2020.101607
Cretarola,
A. & Figà-Talamanca, G. 2020. Bubble regime
identification in an attention-based model for Bitcoin and Ethereum price
dynamics. Economics Letters 191: 108831. doi:10.1016/j.econlet.2019.108831
Drozdz, S., Kwapień,
J., Oświecimka, P., Stanisz, T. & Watorek, M. 2020. Complexity in economic and social
systems: Cryptocurrency market at around COVID-19. Entropy 22(9): 1043.
doi:10.3390/E22091043
Giudici, P. & Abu Hashish, I.
2020. A hidden Markov model to detect regime changes in cryptoasset markets. Quality and Reliability Engineering International 36(6): 2057-2065.
doi:10.1002/qre.2673
İçellioǧlu,
C.S. & Öner, S. 2019. An investigation on the volatility of
cryptocurrencies by means of heterogeneous panel data analysis. Procedia
Computer Science 158: 913-920. doi:10.1016/j.procs.2019.09.131
Ismail, M.S., Hussain, S.I. &
Noorani, M.S.M. 2020. Detecting early warning signals of major financial
crashes in Bitcoin using persistent homology. IEEE Access 8: 179071-179087.
doi:10.1109/ACCESS.2020.3015858
Iqbal, N., Fareed, Z., Wan, G. &
Shahzad, F. 2021. Asymmetric nexus between COVID-19 outbreak in the world and
cryptocurrency market. International Review of Financial Analysis 73:
101613. doi:10.1016/j.irfa.2020.101613
Malik, V. & Bandyopadhyay, S.
2021. Crypto-currency: A bubble waiting for a burst? Economy Polity
Environment: An International Peer-reviewed Journal of Social Studies 3(1):
44-56.
Manimuthu,
A., Raja Sreedharan, V., Rejikumar, G. & Marwaha,
D. 2019. A literature review on Bitcoin: Transformation of crypto currency into
a global phenomenon. IEEE Engineering Management Review 47(1): 28-35.
doi:10.1109/EMR.2019.2901431
Mba,
J.C. & Mwambi, S. 2020. A Markov-switching
COGARCH approach to cryptocurrency portfolio selection and optimization. Financial
Markets and Portfolio Management doi:10.1007/s11408-020-00346-4
Menton, J. 2021. Bitcoin briefly
crashed again, wiping out 2021 gains. Here’s why.
https://www.usatoday.com/story/money/markets/2021/06/22/bitcoin-price-update-ethereum-dogecoin-crashing-heres-why/5304172001/
(Diakses pada 30 Disember 2021).
Nekhili,
R. & Sultan, J. 2020. Jump driven risk model performance in cryptocurrency
market. International Journal of Financial Studies 8(2): 19.
doi:10.3390/ijfs8020019
Özgür, Ö. 2020. Trend detection
through segmentation using discrete hidden markov model. Journal of Economics and Administrative Sciences 38(2): 267-295. doi:10.17065/huniibf.530209
Pennoni,
F., Bartolucci, F., Forte, G. & Ametrano, F.
2021. Exploring the dependencies among main cryptocurrency log-returns: A
hidden Markov model. Munich Personal RePEc Archive.
Paper No. 106150.
Schwaiger, F. 2013. Inference and
application of likelihood based methods for hidden
Markov models. PhD thesis. Mathematisch-naturwissenschaftlichen Fakultät, Philipps-Universität Marburg.
http://archiv.ub.uni-marburg.de/diss/z2013/0416/
Zakamulin,
V. 2020. Not all bull and bear markets are alike: Insights from a five-state
hidden semi-Markov model. https://dx.doi.org/10.2139/ssrn.3678004
*Pengarang untuk surat-menyurat; email: sih@ukm.edu.my
|